Cryptanlysis of CLEFIA

lvica Nikolić (joint work with Sareh Emami, San Ling, Josef Pieprzyk, Huaxiong Wang)

Nanyang Technological University, Singapore Queensland University of Technology, Australia

8 December 2014

< 回 > < 三 > < 三 >

Nanyang Technological University, Singapore Queensland University of Technology, Australia

æ

- 4 回 > - 4 回 > - 4 回 >

Nanyang Technological University, Singapore Queensland University of Technology, Australia

Cryptanlysis of CLEFIA

Block ciphers and analysis

Block cipher $E_{\mathcal{K}}(P)$

- Input: Plaintext P and key K
- Output: Ciphertext C

< ∃⇒

-

Nanyang Technological University, Singapore Queensland University of Technology, Australia

Block ciphers and analysis

Attacker does not know the key. Attacker can fix:

- P and obtain C
- C and obtain P

and try to find:

- Distinguisher (tell apart from random)
- Key recovery (find bits of the key)

()

Differential Attacks

Differential analysis – the most popular form of attack. Find *specific* differences Δ_P, Δ_C s.t.:

```
plaintexts (P, P \oplus \Delta_P)

\downarrow

ciphertexts (C, C \oplus \Delta_C)
```

happens with a high probability

伺 と く ヨ と く ヨ と

Related-key Differential Attacks

Find:

- Plaintext difference Δ_P
- Ciphertext difference Δ_C
- Key difference Δ_K

$$E_{\mathcal{K}}(P) \oplus E_{\mathcal{K}+\Delta \mathcal{K}}(P \oplus \Delta P)$$
$$\downarrow$$
$$\Delta C$$

happens with a high probability

∃→ < ∃→</p>

Related-key resistance

Cipher designers provide related-key resistance mainly in 4 ways:

- 1 we don't care
- 2 we don't know
- 3 we use automatic search tools
- 4 we use heavy non-linear operations in the key schedule

Weak Keys

Sometimes analysis works only for a subset of keys called **weak-key class**.

The analysis that works when the key is secret and chosen uniformly at random for the weak-key class is called **membership test**.

For attacks that use more than one key (such as related-key diff.) the weak-key class is specified as set of tuples.

・日・ ・ヨ・ ・ヨ・

Nanyang Technological University, Singapore Queensland University of Technology, Australia

Cryptanlysis of CLEFIA

The block cipher CLEFIA-128:

- Designed by Sony in 2008
- Submitted to IETF
- In CRYPTREC candidate recommended cipher list
- ISO/IEC lightweight standard

()

A ▶

	CLEFIA-128	Cryptanalysis	Conclusion
C 10			
Specificati	ions		

CLEFIA-128:

- four-branch generalized Feistel cipher
- 128-bit state and key
- 18 rounds as below

< □ > < □ > < □ >

Analysis

Published analysis:

- Single-key: plenty of attacks on round-reduced
- Related-key: None! Designers proved no good differentials exist in the key schedule

2 CLEFIA-128

3 Cryptanalysis

æ

→ @ → → 注 → → 注 →

Nanyang Technological University, Singapore Queensland University of Technology, Australia

Cryptanlysis of CLEFIA

Related-key differentials in Feistel ciphers

Biryukov-Nikolić [Complementing Feistel Ciphers, FSE'13]:

Lemma

RK differentials with Pr = 1 can exist for Feistel ciphers if the the round-key differences are iterative

()

Iterative round key differences

Focus on the key schedule and see how to achieve iterative round key differences. It turns out it is simple:

$$\Delta L = \Sigma^2(\Delta L)$$

$$\Delta K = \pi(\Delta L) \oplus \Sigma(\Delta L)$$

Result: there are 2^{14} pairs of $(\Delta K_i, \Delta L_i)$

For each *i* it means that if ΔK_i after the 12-round Feistel produces ΔL_i then state differential holds with Pr = 1.

 ΔK_i compose the weak-key class of CLEFIA-128.

(E)

Properties of the RK differentials

The differentials $\Delta K_i \rightarrow L_i$ hold with probability 2^{-128} (random permutation). That is, we do not break the claims of the designers.

However, the set $(\Delta K_i, \Delta L_i)$ has a special structure:

$$egin{aligned} & (\Delta K_i, \Delta L_i) = \Lambda_1(x) \oplus \Lambda_2(y), \ & i \in [0, 2^{14}], x \in [0, 2^7 - 1], y \in [0, 2^7 - 1] \end{aligned}$$

Our analysis is based on this fact.

()

Membership test

Assume the key pair belongs to the weak-key class, i.e. $(K, K \oplus K_i)$ for some *i* (generic attack requires: 2¹⁴) Then:

- Take random *P*.
- Create a structure of plaintext P_i = P ⊕ Λ₁(i), obtain the ciphertexts C_i under the first key, and save into list L₁ the values P_i ⊕ C_i.
- Create a structure of plaintext P_j = P ⊕ Λ₂(j), obtain the ciphertexts C_j under the second key, and save into list L₂ the values P_j ⊕ C_j.
- Check on collisions between the two lists L_1 and L_2 .
- If exists collision, output that the cipher is CLEFIA-128.

A (1) × (2) × (3) ×

Membership test

Why it works?

- The XOR of the plaintexts from the two structure results in all possible ΔP_i , hence one must match the required weak-key ΔP_i (that corresponds to the weak-key pair with ΔK_i difference).
- The collisions reveal if such thing happened.

Data,time,memory $\approx 2^8$

< 同 > < 三 > < 三 >

Distinguishers for the hashing modes of CLEFIA-128

Usually, hashing mode analysis coincides with open-key analysis. Distinguishers for the hashing mode means we can distingush the hash function based on the cipher from a random function. CLEFIA-128 has 128-bit state and key, thus we analyze the single-block-length modes (e.g. Davies-Meyer).

A B > A B >

Distinguishers for the hashing modes of CLEFIA-128

How it works:

- Find a key pair that belongs to the weak-key class by using the same trick as in the membership test.
- The pair defines the round key differences, thus any two plaintexts with difference defined by the subkeys will result in predictable (with Pr = 1 difference in the ciphertext.
- Create differential multicollisions (i.e. examples of many pairs of plaintexts,ciphertexts that have the same difference)

Time complexity to find the weak-key pair: 2¹¹⁴

2 CLEFIA-128

3 Cryptanalysis

æ

- 4 回 > - 4 回 > - 4 回 >

Nanyang Technological University, Singapore Queensland University of Technology, Australia

- Our analysis is invariant of round functions and number of rounds
- Has been checked experimentally on small scale variants
- Does not threaten the practical use of CLEFIA-128 in any way
 it simply shows that the cipher is not "ideal"
- If you design Feistel cipher, be aware that the probability of producing iterative round key differences should be much lower than 2^{-state size} (the exact formula is given in the paper)

伺 と く ヨ と く ヨ と